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ABSTRACT
Hyperspectral image unmixing is the process of estimating
pure source signals (endmemebers) and their proportions
(abundances) from highly mixed spectroscopic images. Due
to model inaccuracies and observation noise, unmixing has
been a very challenging problem. In this paper, we exploit the
potential of using autoencoder to tackle the unmixing chal-
lenges. Two important facts are considered in the algorithm:
first, the observation noise in the hyperspectral image gener-
ally exists and largely affects the unmixing results; second,
the mixing process contains sparsity priori which should be
considered to assist the endmember extraction. The proposed
autoencoder cascade concatenates a marginalized denoising
autoencoder and a non-negative sparse autoencoder to solve
the unmixing problem which implicitly denoises the obser-
vation data and employs the self-adaptive sparsity constraint.
The algorithm is tested on a set of synthetic mixtures and a
real hyperspectral image. The experimental results demon-
strate the proposed algorithm outperforms several advanced
unmixing approaches in highly noisy environment.

Index Terms— Hyperspectral image unmixing, Auto-
encoder cascade, Marginalized denoising auto-encoder, Non-
negative sparse auto-encoder

1. INTRODUCTION

The hyperspectral imaging technique is widely utilized in
modern earth environment monitoring, mineral exploration,
urban planning and more other geo-scientific applications.
Through the imaging spectrometers, the hyperspectral image
captures electromagnetic reflectance in hundreds of wave-
length bands with high spectral resolution. However, due
to the low spatial resolution at a pixel position, the mea-
sured spectrum is usually a mixture of reflectance of several
materials, hence the derivation of the individual constituent
materials (endmembers) and their proportions (abundances)
becomes the essential task, which is often referred to as
spectral unmixing, in hyperspectral image analysis [1].

The most commonly model used for the mixture forma-
tion is a linear process with the mathematical expression as

X = AS + E (1)

where X ∈ Rl×n denotes the observation matrix. Each col-
umn ofX represents the spectral measurement of a pixel with
l bands. A ∈ Rl×c is the source matrix containing the signa-
tures of c endmembers. S ∈ Rc×n is called the abundance
matrix, where the row vector si ∈ Rn represents the frac-
tional values of endmember i. In spectral unmixing, S is
subject to two physical constraints which are termed as the
abundance non-negative constraint (ANC) and the abundance
sum-to-one constraint (ASC), respectively [2]. E denotes the
additive uncertainty and noise in the observed data. The goal
of spectral unmixing is to blindly derivate A and S given the
observation set X . This is often a difficult inverse problem
considering the spectral signatures are highly correlated and
badly contaminated by noise in practice [11].

To tackle the unmixing challenge, a number of algorithms
have been proposed. Viewing it from the signal subspace i-
dentification perspective, the unmixing process is modeled as
selecting a few spectral components residing in high corre-
lated signal space from adjacent bands [3]. Projection tech-
niques are adopted to enable such unsupervised subspace i-
dentification, e.g., Principal Component Analysis [4], Sin-
gular Value Decomposition [5] and Independent Componen-
t Analysis [6]. As a blind source separation method, non-
negative matrix factorization (NMF) [7] was proposed and
intensively studied with various additional constraints. Re-
cently, linear sparse regression (LSR) [8] is widely investi-
gated in spectral unmixing. The hypothesis behind is that,
rather than extracting the endmembers from observation da-
ta, they are compressively sensed from a library. Then the
least square regression is solved with the sparsity constraint.
However, these algorithms are suffering from noise polluted
data, improper initialization and heavy dependence on avail-
ability of the suitable library, making them impractical in real
application scenarios [2][3].

In this paper, we introduce an autoencoder cascade to un-
mix the hyperspectral image. The proposed autoencoder cas-
cade integrates the marginalized denoising autoencoder (m-
DA) [9] at the top layer to denoise the data and non-negative
sparse autoencoder (NNSAE) [10] in the unmixing layer to-
gether to estimate the endmembers. The sparsity and a non-
negative properties associated with the autoencoder cascade
enable the efficient encoding and gain an excellent perfor-



mance especially in highly noisy environments.

2. AUTOENCODER CASCADE – STRUCTURE AND
ALGORITHM

The autoencoder cascade is a neural network consisting of
multiple layers of autoencoders in which the output of the
denoising layer is fed to the input of the successive unmix-
ing layer. The hybrid structure is designed to reduce the
noise initially to prevent the mixing matrix from being ill-
conditioned [3]. Given the denoised data, the subsequent
unmixing layer incorporates the non-negative and sparsity
constraints to accomplish the matrix factorization task which
implements the endmember extraction from hyperspectral
mixtures. The diagram of the cascade is illustrated in Fig. 1.
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Fig. 1. The diagram of the autoencoder cascade.

2.1. Marginalized Denoising Auto-encoder

Unlike the traditional denoising autoencoder [12], mDA em-
ploys more efficient encoding process by marginalizing noise
distribution and finding optimal weights for a linear transfor-
mation to reconstruct the original ‘pure’ signals. Suppose the
columns xi in matrix X ∈ Rl×n represent the ‘clean’ true
spectral data. The observed noisy version of xi is denoted
as x̃i. A linear transformation matrix W : Rl → Rl is in-
troduced to recover xis from the observation x̃is. Then, the
denoising process is modeled as learning W by minimizing
the squared loss,

1

2n

n∑
i=1

‖xi −Wx̃i‖2 (2)

The process is performed m-times across the data to lower
the variance. Considering the entire dataset in matrix form,
X = [x1, x2, ...xn] ∈ Rl×n, and its m-time repeated version
as X̄ = [X,X, ....X]. The corrupted version of X̄ as X̃ . With
such notation, the squared loss in Eq. (2) is converted to

Lsq(W ) =
1

2mn
tr[(X̄ −WX̃)T (X̄ −WX̃)] (3)

The solution to Eq. (3) has the closed-form as

W = PQ−1 with Q = X̃X̃T and P = X̄X̃T (4)

which is the classic solution for traditional least square prob-
lem [13].

When m → ∞, matrices P and Q converge to the ex-
pectation values following the law of large number where the
mapping transformation W can be expressed as

W = E[P ] · E[Q]−1. (5)

Once W is acquired, the denoising process can be finished by
X̂ = sigmoid(W ∗ X̃), where X̂ is the denoised data. The
sigmoid function performed as an encoder to incorporate the
non-linearity. The mathematic details of the solver to calcu-
late the E[P ] and E[Q] can be found in [9].

2.2. Non-negative Sparse Auto-encoder

The traditional autoencoder is a diabolo shaped neural net-
work. It tries to learn the parameters that reconstruct an input
vector by minimizing the cost function over the dataset,

1

n

n∑
i=1

‖g ◦ f(xi)− xi‖2 (6)

where f(x) = φ(WTx) acts as an encoder, and g(H) = WH
acts as a decoder, with component-wise sigmoid activation
functions deployed on the hidden layer. W is a matrix of
weights shared between input-to-hidden and hidden-to-output
layers. The spectral unmixing under study is modeled with
autoencoder by taking the input as the observation spectra
and setting the number of hidden neurons as the number of
the endmembers. We refer to rows of the weight matrix W as
basis for reconstruction in the decoding process. Thus, these
bases form as the set of endmembers in unmixing, and the
vectors in H served as abundances associated with each end-
member extracted.

To consider the sparsity constraint in mixture, we modi-
fy the activation function as the augmented logistic function,
which is in the form of

f(x) =
1

1 + e−(aigi−bi)
(7)

where gi = WT
ijxi. By adjusting the parameters ai and bi

in the logistic function, it controls the information transfor-
mation between neurons. In the intrinsic plasticity mecha-
nism [14], the Kullback-Leibler divergence of the neuron’s
output distribution with respect to a desired exponential out-
put distribution is minimized. The sparsity measurement in
term of mean activity level µ appears as a global parameter to
control the learning process of ai and bi. The gradient rule to
update ai and bi with learning rate ηIP is

∆bi =ηIP (1− (2 +
1

µ
)hi +

1

µ
h2i )

∆ai =ηIP
1

ai
+ gi∆bi

(8)



where hi is the activation of the ith neuron. Through the gra-
dient learning, the lifetime sparseness of the neurons are ac-
complished. We use small learning rate ηIP = 0.001 and set
µ = 1

c for all the configurations.
To enforce the weight matrix to be non-negative, the on-

line error correlation rule is applied

∆wij = η(xi − x̂i)hj + |w̃ij | (9)

where |w̃ij | converts the negative elements in W to positive,
and η = 0.002 is the learning rate.

At the end of each iteration, the activation measurement
hi will be normalized to satisfy the abundance sum-to-one
constraint.

In our approach, since both the sparsity and non-negative
constraints are naturally incorporated in a self-adaptive way,
the encoding efficiency is largely improved.

3. EXPERIMENTS

We conduct two experiments on both the synthetic and real
hyperspectral datasets to evaluate the proposed autoencoder
cascade. The spectral angle distance (SAD) and abundance
angle distance (AAD) are adopted as the comparison metrics.

3.1. Evaluation on Synthetic Data

The synthetic data are generated using the linear mixing [1]
of spectral reflectance record with 188 bands from the US-
GS digital spectral library [15]. To simulate the sensor noise
and device error, the zero-mean Gaussian random noise is
added to the mixture data. Defining the signal-noise-ratio as
SNR = 10 log10(E[xTx]/E[nTn]), we create the datasets
by adding the noise varied from 30dB to 5dB as the settings
used in [16].

We unmix the synthetic data by selecting four endmem-
bers. The pure endmember signatures are absent from the
data which means the unmixing processing is completely un-
supervised.

In Fig. 2, we demonstrate the output of the denoising
(SNR = 20dB). Clearly, the denoised data become more
smooth and the outliers have been largely removed.

The comparison results with the popular unmixing ap-
proaches VCA-FCLS and GDME [16] are demonstrated in
Table. 1. With the implicit denoising procedure and non-
negative sparse autoencoder, our proposed autoencoder cas-
cade has the best performance with average improvement
by 45.38% on SAD and 42.10% on AAD over GDME. The
extracted endmembers with 20dB data are demonstrated in
Fig. 3.

3.2. Evaluation on Real Image Scene

The proposed autoencoder cascade is also tested on the sub-
scene of AVIRIS data captured over Cuprite, Nevada [17]. We
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Fig. 2. The denoising results. Red curves are noisy data, blue
curves are denoised results. (SNR=20dB)

Table 1. SAD (upper) and AAD (lower) comparison at d-
ifferent noise levels using synthetic data. The auto-encoder
without mDA is also compared as NNSAE [10].

Method 5dB 10dB 15dB 20dB 30dB
VCA-FCLS 6.902 4.140 2.148 1.217 0.338
GDME 4.475 1.783 0.777 0.417 0.123
NNSAE 2.405 0.953 0.420 0.178 0.120
Proposed 2.179 0.787 0.320 0.153 0.112
VCA-FCLS 13.908 8.652 4.884 2.697 0.901
GDME 12.166 6.947 4.033 2.023 0.814
NNSAE 9.862 5.764 2.933 0.817 0.625
Proposed 8.955 4.178 1.824 0.707 0.608
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Fig. 3. The demonstration of extracted endmembers. Red
curves are ground-truth, and blue curves are extracted end-
members. (SNR=20dB)

assume the estimated endmembers c = 9 which is coincid-
ed with [1]. The abundance maps generated are illustrated in
Fig. 4. Due to the lack of ground-truth, we only compare them



with the published geological papers using the same data [1].
Our estimations present more condensation appearance rather
than scattered distributions for the materials of the same type.

Fig. 4. Demonstration of the abundance maps extracted from
Cuprite image. We use c = 9 endmembers for estimation.
The resulting abundance maps contain condensation property
for different materials.

4. CONCLUSION

This work represents the first attempt that uses deep-learning
related approaches for spectral unmixing applications. We
proposed an autoencoder cascade which concatenates a
marginalized denoising autoencoder and a non-negative s-
parse autoencoder for hyperspectral image unmixing. It thus
processes the advanced denoising capability and the non-
negative sparse encoding capacity optimized by the intrinsic
self-adaptation rule. With such properties, the proposed
autoencoder cascade outperformed some popular unmixing
approaches on the synthetic hyperspectral image in highly
noisy environment and received promising performance on
real scene data.
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