Cooperative Control for Pursuit Evasion Game

Hongbin Li
June 11th 2008
Cooperative Control for Multi-Vehicle Systems. [Murray:07]

- Cooperative: each vehicle being a dynamic system, and they share a same task without adversarial interference.

- Applications:
 - Military: formation flight, cooperative classification and surveillance, cooperative rendezvous, mixed initiative systems etc.
 - Mobile Sensor Networks: environmental sampling, distributed aperture sampling etc.
 - Transportation Systems: Intelligent highways, air traffic control etc.

Related PEG Systems

- [Demirbas:03]
 - **Evader-Centric**: Sensor nodes near the evader maintain a tracking tree dynamically.
 - Pursuer searches the network until it reaches the tracking tree, and then follows the tree to its root in order to catch the evader.
 - Networked Sensors are tunable for tracking speed or energy efficiency
 - **Pursuer-Centric Extension**: Pursuer sends out agents to find the evader tree, saving energy for locomotion!
 - Small scale experiment: 4 X 4 motes

Related PEG Systems

- [Sharp:05] reports an experiment of 100 nodes in a field of 400 square meter.
- Provides physical design experiences a sensor network for detection (Magnetic), routing (landmark)
- Uses GPS to provide pursuer’s position

Related PEG Systems

- [Oh:07] deployed a sensor network system for target tracking with PIR as binary sensors. The main contribution is data association for multiple target tracking.
- Simulations were used to generate the pursuit process. Pursuer is **not** truly implemented.

Our Current System

- Follows an architecture similar to [Sharp:05]
- As an Indoor test bed, we use a Camera feedback system to take the place of GPS

- We tested two different distributed sensor network coordination method:
 - Group management
 - Cluster-based
Our Current System

Demo One:
- Distributed Group Management.
- HW: MICAz compatible motes, use RSSI to detect evader and calculate the location estimates.
Our Current System

- Demo Two:
 - Single Cluster Management: Nodes are activated only when needed.
 - HW: IRIS motes
 - No longer provides RSSI.
 - Could be used as binary sensors
Where is the **GAME**?

- The Tracking and Pursuit is decoupled by the sensor network!
- It is **unfair** to provide the pursuers with global information and leave the evaders nothing.
- Need more **general settings** that make the game interesting:
 - Tunable information availability for evader/pursuer and tunable moving speed.
 - Task assignment and collision avoidance for pursuers.
 - Consider faulty network transmission with unpredictable latency.
[P. Beling] developed a simulation-based test bed for researchers to compare the performance of PEG strategies.

Formulate the RoboCop problem as a min-cost flow network problem.

PE Game in Sensor Networks

- [Sert] considers chessboard like network (with clustered sensors). Information Available to both pursuer/evader.

- Pursuit considerations
 - Shortest-path pursuit
 - Non-Collaborative Assignment
 - Collaborative Assignment
 - Obstacle Avoidance (not included in the optimization formulation)

- Evader has greedy policy: Maximize the distance between the nearest pursuer at each instance.

Possible Research Directions

- Dynamic Target Assignment
 - Methods: Scheduling, Optimization.

- Pursuers Formation Control (For Multi-On-One)
 - Methods: Flocking (when searching the evader), Rendezvous/Capture (when evader targeted)

- Pursuit-Evasion Strategy
 - Use prediction schemes to counteract different evader mobility models.
 - Take into account network latency.

- All Could Be Categorized into Multi-Robot Cooperative Control Problem
Integration with previous research

- Extend the PEG in Aisle Environment:
 - Utilize indoor positioning technique to detect evaders. [Li:08a]
 - Utilize static sensors to guide pursuers. [Li:08b]

[Li:08a] H. Li et al. INEMO: Distributed RF-based Indoor Location Determination with Confidence Indicator. EURASIP Journal on Advances in Signal Processing, vol. 2008