Laser Textured Ca-P Bioceramic Coatings for Hard Tissue Replacement

Sameer R. Paital, Zheng Cao, Wei He and Narendra B. Dahotre
Laboratory for Laser Materials Synthesis and Fabrication
Materials Science and Engineering
The University of Tennessee, Knoxville, TN, 37996
OUTLINE

• Introduction
 ➔ Important factors that dictate the success of a biomaterial
 ➔ Textured Ca-P bioceramic coatings and its importance for load bearing implant applications
 ➔ Advantages associated with lasers
• Ca-P coatings on Ti-6Al-4V using a CW Nd:YAG laser system
• Results and Discussion
• Conclusions
INTRODUCTION

Def: Biomaterials are synthetic or natural materials intended to function appropriately in a bio environment and thereby restore the function of a damaged or diseased tissue.
Three important factors that dictate the success of a biomaterial are:

• **Type of Material**: metals, ceramics, polymers, and natural materials.

• **Design**: appropriate mechanical properties, durability, functionality, and biological response.

• **Biocompatibility**: Acceptance of the biomaterial by the surrounding tissues.
Hierarchical organization of bone

- Human bone is a hierarchical organization at different length scales.
- Understanding the structure-property relationship of this hard tissue is important towards effective design of load bearing implants.

Sequential bioreaction at the implant surface

- Protein adsorption
- Cells interaction
- Cell orientation and contact guidance.
- Organization and multiplication into complex tissues.
Ca-P based coating on Ti-6Al-4V using a Nd:YAG laser

- Precursor Material: Ca$_5$(OH)(PO$_4$)$_3$ powder.
- Substrate: Ti-6Al-4V

Laser parameters used for the coating:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand off distance</td>
<td>356 mm</td>
</tr>
<tr>
<td>Spot size</td>
<td>400 µm</td>
</tr>
<tr>
<td>Scan speed</td>
<td>500 mm/sec</td>
</tr>
<tr>
<td>Avg. power</td>
<td>215 W, 300 W</td>
</tr>
<tr>
<td>Hatch distance</td>
<td>0.1 mm, 0.2 mm</td>
</tr>
</tbody>
</table>

Fig. Schematic of the continuous wave Nd:YAG laser system used for the coating process
Microstructure and Morphological evolutions

- Textured Ca-P coatings resulting from the varying laser input power and track overlap.
- Decrease in Ca and P atomic concentration with increasing laser power.

Fig. SEM and the corresponding EDS spectra as inset for the samples processed at (a) 215 W 0.1 mm hatching, (b) 300 W 0.1 mm hatching, (c) 215 W 0.2 mm hatching and (d) 300 W, 0.2 mm hatching.
Phases within the coatings: CaTiO$_3$, TiO$_2$, Ti, Al, Al(OH)$_3$, Al$_2$O$_3$, VO(OH) and Ca$_5$(OH)(PO$_4$)$_3$.

Fig. 4 XRD for the samples processed at (a) 215 W 0.1 mm hatching, (b) 215 W 0.2 mm hatching, (c) 300 W 0.1 mm hatching and (d) 300 W, 0.2 mm hatching.

Fig. SEM of the cross-section of the samples processed at 215 W 0.2 mm hatching.

- Textured Coating
- Encapsulated Ca-P phases
- Metallurgical bonding at the interface
Fig. Variation of surface roughness parameters as a function of laser processing parameters.

- Maximum surface roughness for the sample processed at a laser power of 215 W and 0.2 mm hatching.
- Controlled and regular topographic cues.

Fig. 7 Confocal 3-D surface images of the laser processed samples.
• Improved bioactivity for the sample processed at a laser power of 215W and 0.1mm hatching
Fig. SEM micrographs revealing the formation of globular apatite like layer following immersion in SBF for different time periods.

- Transition from a globular to segregated apatite phase with increasing immersion time.

Fig. Dependence of Ca and P atomic concentrations and Ca/P atomic ratio to SBF immersion time for the samples processed at 215 W 0.1 mm hatching.

- Ca/P atomic ratio reached the atomic ratio of (HA) only after 96 hours of immersion period.
Mechanism of apatite formation

- Precipitation of OH\(^-\) ions on the textured surface due to beneficial phases such as CaTiO\(_3\) and TiO\(_2\).

\[
\text{CaTiO}_3 + 3\text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 + \text{Ti(OH)}_4
\]

\[
\text{TiO}_2 + 2\text{H}_2\text{O} \rightarrow \text{Ti(OH)}_4
\]

- Presence of a negatively charged surface enhanced the formation of apatite.

\[
10\text{Ca(OH)}_2 + \text{H}_3\text{PO}_4 \rightarrow \text{Ca}_{10} (\text{PO}_4)_6(\text{OH})_2 + 18 \text{H}_2\text{O}
\]
Biocompatibility

Test: In-vitro culture of the mouse MC3T3-E1 osteoblast cells.

- Improved cell viability on the laser processed samples as compared to the control (WST-1 assay).
- Improved cell adhesion of the laser processed samples were characterized by the anchoring of the lamellipodia to the textured grooves.

Fig. 11 (a) WST-1 assay and SEM morphology of the MC3T3-E1 osteoblast cells after 1 day incubation on (b) control and the samples laser processed at (c) 215 W 0.1mm hatching, (d) 300 W 0.1 mm hatching, (e) 215 W 0.2 mm hatching and (f) 300 W, 0.2 mm hatching.
Fig. Cytoskeleton assessment of MC3T3-E1 osteoblasts after 1 day culture on (a) control and the samples laser processed at (b) 215 W 0.1 mm hatching, (c) 300 W 0.1 mm hatching, (d) 215 W 0.2 mm hatching and (e) 300 W, 0.2 mm hatching.

- Well developed network of focal adhesion contacts for the laser processed samples.
- Enhanced spreading on the textured surfaces as compared to the control.
- More stressed actin filaments on the textured surfaces.
CONCLUSIONS

• A novel laser induced direct melting technique is established to synthesize physically textured Ca-P coatings on Ti-6Al-4V.

• XRD studies of the coated sample showed the presence of beneficial biocompatible phases such as CaTiO$_3$ and TiO$_2$ within the coatings.

• Improved bioactivity of the coated samples were proved by the formation of an apatite like phase following immersion in SBF.

• Rapid saturation of Ca/P atomic ratio to the atomic ratio of HA (1.67) was observed with increase in SBF soaking time.

• Biocompatibility of the coated samples were proved with respect to enhanced cell proliferation and spreading on the laser textured surfaces.
ACKNOWLEDGEMENTS:

• The authors would like to acknowledge Center for Laser Applications (CLA) University of Tennessee Space Institute for supporting this work.
THANK YOU